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Among the various logical components of a phasor measurement unit (PMU), the
synchrophasor estimation (SE) algorithm definitely represents the core one. Its choice
is driven by two main factors: its accuracy in steady state and dynamic conditions as
well as its computational complexity.

Most of the SE algorithms proposed in the literature are based on the direct
implementation of the Discrete Fourier Transform (DFT). This is due to the relatively
low computational complexity of such technique and to the inherent DFT capability
to isolate and identify the main tone of a discrete sinusoidal signal and to reject close-
by harmonics. Nevertheless, these qualities come with non-negligible drawbacks and
limitations that typically characterize the DFT: mainly they refer to the fact that the
DFT theory assumes a periodic signal with time-invariant parameters, at least along
the observation window. The latter, from one side should be as short as possible to
be closer to the above-mentioned quasi-steady-state hypothesis also during power
system transient; on the other hand, longer windows are needed when interested in
rejecting and isolating harmonic and inter-harmonic signals that are quite frequent in
power systems.

In this respect, this chapter first analyses the DFT with a particular focus on
the origin of the well-known aliasing and spectral leakage effects. Then it formulates
and validates in a simulation environment a novel SE algorithm, hereafter referred as
iterative-Interpolated DFT (i-IpDFT), which considerably improves the accuracies of
classical DFT- and IpDFT-based techniques and is capable of keeping the same static
and dynamic performances independently of the adopted window length that can be
reduced down to two cycles of signal at the nominal frequency of the power system.

This chapter is organized as follows: Section 3.2 introduces the nomenclature
and some basic concepts in the field of synchrophasors. Section 3.3 presents the
theoretical background of the DFT, with a specific focus on the detrimental effects of
aliasing and spectral leakage. Next, Section 3.4 discusses advantages and drawbacks
of DFT-based SE algorithms and derives the analytical formulation of the i-IpDFT
method. Finally, Section 3.5, after illustrating the procedure presented in Reference 1
to assess the performances of a PMU, analyses the performances of the i-IpDFT



78 Advances in power system modelling, control and stability analysis

algorithm using two of the testing conditions presented in Reference 1 and compares
them with those of the classical IpDFT technique.

3.1 Literature review

The scientific literature in the field of synchrophasor is quite recent but it already con-
tains several contributions presenting novel algorithms for the calculation of phasors
and/or local system frequency and rate of change of frequency (ROCOF).

In general, according to the adopted signal model, SE algorithms can be grouped
into two categories [2]:

e algorithms based on a static signal model that assume that the waveform
parameters are constant within the adopted window length;

e algorithms based on a dynamic signal model that assume a more sophisticated
but generic signal model that includes also the possibility that the waveform
parameters are time varying within the observation time window.

The main representatives of the latter category are based on the so-called Taylor—
Fourier transform and were initiated with Reference 3. The advantages of these
algorithms are evident and refer to the possibility of tracking and potentially esti-
mating the power system dynamics (e.g., References 4, 5). Nevertheless, they are
characterized by a non-negligible drawback, represented by their computational com-
plexity that generally tends to be higher and does not typically match the available
computational resources of standard hardware platforms. Additionally, it is barely
impossible to track any kind of dynamics. In particular sudden ones, like those hap-
pening during faults, still deteriorate the quality of the estimated synchrophasor for
the duration of the window length, that is typically quite high to keep the estimation
uncertainty within reasonable limits.

On the other hand, SE algorithms based on a static signal model are the most
common one, due to their good their trade-off between computational complexity and
estimation accuracies. The majority of these methods is based on the direct imple-
mentation of the DFT [6]. Non-DFT-based SE methods based on a static signal model
have also been proposed along the years. These include, among others, zero-crossing
methods [7, 8], demodulation filters [7, 9], adaptive filters [ 10, 11], compressive sens-
ing algorithms [12, 13], wavelet-based algorithms (e.g., Reference 14), resampling
methods [15], Prony’s estimation methods [16] and Matrix Pencil methods [17].

Based on the window length, DFT-based SE algorithms can be grouped into
multi-cycle, one-cycle or fractional-cycle DFT estimators performing recursive and
non-recursive updates (e.g., References 18-20). In order to improve their accu-
racy, DFT-based algorithms have been sometimes proposed in combination with
weighted least squares (e.g., Reference 21) or Kalman filter-based methods (e.g.,
Reference 22). Within this category, in order to reduce the effects of leakage and of the
so-called picket-fence effect, the use of time windows in combination with the well-
known Interpolated-DFT (IpDFT) technique has been first proposed in References
23,24 and further developed in References 25-28. More in particular, contributions
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[27, 28] have proven that the effects of long- and short-range leakage can be con-
siderably minimized by adopting suitable windows functions and IpDFT schemes,
respectively (see also References 29, 30). The advantages of this kind of approaches
refer to the relatively simple implementation and low computational complexity capa-
ble of achieving reasonable accuracy and response times (RTs) after a careful selection
of the algorithm parameters.

3.2 Definitions

This section recalls the theoretical definition of a phasor and derives the concept
of synchrophasor starting from a given signal model. Then, it illustrates the general
architecture of a PMU together with a preliminary analysis of its components.

3.2.1 Signal model

Electrical power is traditionally delivered from the generators to the end users through
an infrastructure that is mainly composed by components operating in alternating
current (AC). As a consequence, during normal operating conditions of the power
system, voltage and current waveforms are usually modelled as signals characterized
by a single sinusoidal component with constant parameters:

x(t) = Ao - cosrfot + ¢o) 3.D

being Ay the nominal peak amplitude, ¢, the initial phase, i.e., for # = 0, and f; the
nominal frequency of the power system, i.e., 50 or 60 Hz.

However, even in normal operating conditions, a power system is never in a
steady state. As a consequence, the parameters of (3.1) are rarely time-invariant and
typically exhibit various dynamics. Frequency fluctuations are definitely the most
evident phenomena and are typically related to changes in load or imbalances in
generation and to the interactions between power demand in the grid, inertia of large
generators and the operation of governors equipping the majority of power generators
[31]. Additionally, when faults or other switching events take place, those variations
can involve even larger frequency fluctuations [32].

Similarly, the waveform amplitude and phase are also affected by transient phe-
nomena. Those can be relatively slow like in the case of power swings (i.e., amplitude
and phase oscillations typically characterized by frequencies below few hertz) or
faster like in the case of switching events or faults that usually produce step changes
involtage and current waveforms with spectral components that can even reach several
hundreds of kilohertz.

Additionally, the main tone is often corrupted by other superposed signals that
can be of different nature. In the literature, the following interfering signals are usually
considered:

e Harmonics, namely spectral components at frequencies that are multiple integers
of the AC system instantaneous frequency that, as previously stated, can be dif-
ferent from the nominal one (fy). These signals are typically produced by power
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electronics devices: in transmission systems, these can be flexible AC transmis-
sion systems (FACTS) or high-voltage direct current (HVDC) connections. On
the other hand, at distribution level most of the harmonics are generated by con-
verters typically interfacing distributed generation units or non-linear loads [31].
The literature on PMUs usually considers the effects of harmonics up to the 50th,
assuming that higher frequency components are either attenuated by the analogue
front-end filters of the PMU or too far in the frequency spectrum to be considered
relevant [1].

Inter- and sub-harmonics, namely spectral components at frequencies that are
not multiple integers of the system frequency: inter-harmonics are characterized
by a frequency that is bigger than the nominal one f; and sub-harmonics by a
frequency that is smaller than fy. The causes of inter- and sub-harmonics are
usually static frequency converters, cycloconverters, subsynchronous converter
cascades, induction motors, arc furnaces and all loads not synchronous with the
fundamental power system frequency [33].

Aperiodic components like decaying direct current (DC) offsets that are likely
to appear during power system transients (consider, for instance, the case of a
decaying short-circuit current or inrush of transformers/induction motors). The
involved time constants can vary in the range between 0.1 and 10 s.

Wide-band noise that includes both the “measurement noise” (namely the noise
added by any measurement equipment) and the so-called grid noise. Regarding
the latter, the most well-known phenomena are the thermal noise (also known as
Johnson/Nyquist noise), the corona effect, and partial discharges. Both sources
are usually modelled as a zero-mean Gaussian noise processes.

As a consequence, a generalized and more complete signal model that takes into

account each one of the above-mentioned dynamics and interfering signals can be
formulated as follows:

H
x(t) = A() cosQf (0t + go) + Y A1) cosQufi(t)t + @) + Apc(De” F + €(t)

h=1
(3.2)

where

The first term represents the main tone of the spectrum, characterized by an
instantaneous frequency f'(¢) that is typically very close to the nominal frequency
ofthe power system fy, an instantaneous peak amplitude 4(¢), and an instantaneous
phase ¥(¢) = 2f ()t + ¢;.!

The second term models the contribution of any superposed sinusoidal tone
excluding the main one. In other words, it includes all the effects of harmonic,

The assumption of having a constant initial phase ¢ is both mathematically and physically correct. It
implies that the instantaneous phase variations are only due to the power system frequency variations and
it avoids the possibility of having multiple couples of frequency and initial phase that produce the same
instantaneous phase (7).
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inter- and sub-harmonic tones, characterized by an instantaneous frequency f;(¢)
(that does not necessarily need to be an integer multiple of the fundamental fre-
quency f'(¢)), peak amplitude 4,(¢) and instantaneous phase v, = 27f,(t)t + ¢,
being ¢, the initial phase. During normal operating conditions, the peak ampli-
tude is at least one order of magnitude lower than the one of the main tone A(?),
but no hypothesis can be made with respect to the instantaneous phase that does
not necessarily have to match the one of the main tone.

e The third term models a decaying DC component characterized by an initial
amplitude 4pc and an arbitrary time constant 7.

e The last element models a superposed wide-band noise that includes any other
contribution not included in the previous terms.

3.2.2 Phasor

The phasor transformation has been historically adopted in electrical engineering to
simplify the analysis of electrical systems in sinusoidal steady state. It consists in
a one-to-one mapping between time-harmonic functions and complex numbers that
can be adopted if and only if the instantaneous frequency f, peak amplitude 4 and
initial phase ¢ are time-invariant, namely, if and only if the sinusoidal signal x(¢)
is stationary (see (3.1)). In particular, such a transformation allows to represent a
sinusoidal function of time like the one expressed by (3.1) with a single complex
constant and vice versa. In order to derive it, we can rewrite (3.1) as:

x(t) = A - cosrft + ¢) 3.3)
= Re{4 - ej(Zﬂﬁ+<ﬂ)} (3.4)
= Re{d - /Y (3.5)

where the dependency of ¥/(#) on time can be disregarded due to the stationarity of
x(t). We can then associate to the sinusoid x(#) the complex number X and call it
phasor:

()= X 24V (3.6)
=4 - [cos(y) +j sin(¥)] (3.7
=X, +/X; (3.8)

where the subscripts 7 and i identify the real and imaginary parts of X. A phasor can
be represented either in polar (3.6) or rectangular (3.8) coordinates and the transfor-
mation from one set of coordinates to the other can be done using the well-known
Euler identity (3.7).

3.2.3 Synchrophasor

The phasor concept cannot be directly applied to the analysis of a real AC power
system for the simple reason that the stationarity hypothesis does not hold in prac-
tice. Nevertheless, even when the power system is not in steady state (e.g., during
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electromechanical oscillations), the voltage and current variations can be assumed rel-
atively slow and be treated as a series of steady-state conditions where the stationarity
hypothesis holds (quasi-steady-state approximation).

With such an assumption the phasor analysis can be still applied but it requires
that the measured values are referenced to a common time reference and taken at the
same instant in time. For this reason the phasor concept has been extended to the
synchrophasor one that has been first defined in the IEEE Std. 1344-1995 [34] as:

[...] a phasor calculated from data samples using a standard time signal as the
reference for the sampling process. In this case, the phasors from remote sites
have a defined common phase relationship. [. . .]

Thanks to the explicit reference to a common time reference ¢, the synchrophasor
concept allows to define a common phase relationship between phasors from remote
sites. Additionally, it is not restricted to the analysis of stationary systems since
a synchrophasor can be associated to any waveform characterized by a dominant
sinusoidal component, also, during power system transients and with superposed
interfering signals.?

The synchrophasor concept, and particularly the analytical definition of its phase,
has been reviewed later in the IEEE Std. C37.118.1-2011 [1] that defined it as follows:

[...] the instantaneous phase angle relative to a cosine function at the nomi-
nal system frequency synchronized to Coordinated Universal Time (UTC). [...]
Under this definition v is the offset from a cosine function at the nominal system
frequency synchronized to UTC. [. . .]

As shown in Figure 3.1, such a convention implies that, if a sinusoidal waveform
representing a generic current or voltage, has its maximum at the UTC-second rollover
(i.e., when the cosine has its maximum) the synchrophasor angle is 0°. It is 90° if the
positive zero-crossing occurs at the UTC-second rollover.

The above IEEE Std. definition, which refers the phase to an hypothetical signal
at the nominal frequency f; synchronized to the UTC, is restrictive and might generate
ambiguities. A better and more generic definition of synchrophasor can be given by
referencing both amplitude and phase estimations to the same time reference:

Definition. The synchrophasor representation of the signal x(t) in (3.2) is the complex

function X (t) characterized by an instantaneous amplitude and phase correspond-
ing to the instantaneous amplitude A(t) and phase Y (t) of the main tone of x(t),
respectively, being t the UTC time reference.

2]t is worth pointing out that the synchrophasor refers only to the main tone of x() and does not take into
account any other contribution that might be present in the original signal.
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Figure 3.1 Phase convention for synchrophasors for a signal of amplitude X,
(adapted from Reference 1)

As aconsequence, in the case of the signal x(¢) represented in (3.2), the associated
synchrophasor is:

x(t) = X(1) £ A(t) - /YO (3.9)
= A(f) - /@ O1H9) (3.10)

where A(¢) and ¥/ (¢) are the instantaneous peak amplitude and phase of the main tone
of x(¢) (see (3.2)).

3.2.4 Frequency and rate of change of frequency

According to the IEEE Std. C37.118, frequency is defined starting from the first-order
derivative of the instantaneous phase ¥/ (¢):

d d

% = 21/ +¢] (3.11)
_ df
= 27 [f(t) + Et] (3.12)

With the quasi-steady-state assumption, the term df /d¢ ~ 0 and frequency can
be defined as:

1d
fioy = 5 0

Similarly, the ROCOF is defined in the IEEE Std. C37.118 as the first-order
derivative of the frequency:

AU
dt

(3.13)

ROCOF(t) = (3.14)
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It is worth underlying that the definitions given in (3.13) and (3.14) disagree
as (3.13) has been obtained with an approximation (df /d¢# = 0) that would lead to
ROCOF = 0. However, for slow-varying frequencies (3.14) can be still considered
as a correct approximation to compute the frequency time derivative.

3.2.5 Phasor measurement unit

According to the IEEE Std. C37.118.1-2011 [1], a PMU is a stand-alone physical unit
or a functional unit within another physical unit

[...] that produces synchronized phasor, frequency, and ROCOF estimates from
voltage and/or current signals and a time synchronizing signal. [. . .]

The logic architecture of a generic PMU is shown in Figure 3.2. The PMU,
in order to report synchronized measurements, needs to be equipped with a time-
synchronization module capable of receiving the UTC absolute time from a reliable
and accurate time source. The time-sync unit internally generates the “time base”,
namely a stable and accurate internal time reference, used by the signal conditioning
and analog to digital (A/D) conversion unit to discipline® the sampling process of the
input waveforms (as many as the number of connected input channels). The sampled
waveforms are then transferred, sample by sample, to the SE algorithm, the core
component of any PMU, that extracts the fundamental tone of a distorted sinusoidal
waveform from a previously acquired set of samples and estimates its amplitude,
phase and frequency, and ROCOF. The estimated values are then transferred to the data
encapsulation and streaming unit that encapsulates and streams the data according,
for instance, to the IEEE Std. C37.118.2-2011 [35] or IEC 61850-90-5 [36] data-
transmission protocols.

It might be obvious, but still worth pointing out, that each one of the logical com-
ponents highlighted in Figure 3.2 contributes to the global uncertainty that intrinsically
characterizes the PMU estimations. In particular:

e The time-sync unit, depending on the adopted time source and dissemination
technology, might deteriorate the synchronism of the sampling process (i.e., its
alignment to the UTC-second rollover and the accuracy of the sampling time).
Such an uncertainty can have non-negligible effects on the overall measurement
accuracy, particularly in the estimation of the phase.* According to the PMU
accuracy requirements dictated by Reference 1, the maximum acceptable timing
uncertainty is £26 ps for a 60 Hz system and 431 ps for a 50 Hz system. In
practice, PMUs adopt much more accurate timing sources, to further reduce the
timing uncertainty.

3Such a functionality is quite common in PMUs but not mandatory. The synchronization of the sampling
process to a common time reference can be also achieved by post-processing the acquired samples.

“The time-sync uncertainty linearly translates in phase uncertainty based on the instantaneous frequency
values following the formula Ay = 27 f At, being Ay and At the phase and time uncertainties.
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Figure 3.2 Scheme of a generic PMU

e Thesignal conditioning and sampling unit introduces an uncertainty that is mainly
related to the intrinsic noise, non-linearities and gain errors introduced by the
analogue filtering stage (anti-aliasing filters for instance) and to the quantization
error introduced by the A/D converters.

e The SE algorithm is characterized by its own accuracy levels that are typically
assessed in a simulation environment following the guidelines given by the IEEE
Std. C37.118 [1] (see also Section 3.5). Nevertheless, this IEEE Std. does not
take into account every possible power system operating condition and the SE
algorithm estimations might be biased when processing non-contemplated wave-
forms. For instance, it has already been demonstrated that different SE algorithms
might produce different estimations, particularly when exposed to power system
transients [37].

Finally, it should be noted that, in order to transform the power system volt-
age and current waveforms to levels appropriate for the PMU analogue front-end,
the PMU must be interfaced to the electrical grid using instrument transformers
(refer to Reference 38 for a partial review of the available instrument transformer
technologies).

Although this aspect will not be treated along this chapter, it is worth point-
ing out that the uncertainty introduced by this transformation stage, if not properly
designed, might be dominant and exceed those introduced by the PMU components.
For instance, in the case of standard magnetic core voltage and current transformers
(VTs and CTs), their accuracy is generally limited to class 0.5. This, according to the
definition of the standards [39, 40], translates, at full scale, to a maximum ratio error
of 0.5% and a maximum phase error of 6 mrad for VTs and 9 mrad for CTs. Such
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an uncertainty, in most of the cases, exceeds the one of the PMU and deteriorates,
therefore, the expected accuracies.

3.3 The discrete Fourier transform

The DFT is the most common analytical tool to extract the frequency content of a finite
and discrete sequence of samples, obtained from the periodic sampling of a continuous
waveform in the time domain. This also applies to the field of synchrophasors, where,
as it will be shown later, the DFT represents the most common technique to extract
the waveform parameters out of a sequence of samples.

In this respect, this section derives the analytical formulation of the DFT starting
from the theoretical formulation of the Fourier transform of a continuous signal of
infinite duration. Next, it highlights the most relevant DFT properties and investigates
two well-known effects caused by the computation of the DFT such as aliasing and
spectral leakage.

3.3.1 From the Fourier transform to the DFT

The Fourier transform of a continuous function of time x(¢), satisfying integrability
constraints [41] is defined as:

+o00

X(f)= / x(t)e 7 dt (3.15)
—0oQ

and it is used to transform a continuous time-domain function x(z) to a continuous

frequency-domain function X (f').

In practice, continuous signals are sampled using A/D converters producing a
sequence of samples x(#) that can be easily treated by any digital hardware (samples
are assumed to be equally spaced by T, = 1/Fj, being Fy the PMU sampling rate). In
this respect, the discrete-time Fourier transform (DTFT) has been defined to transform
a time-domain sequence of infinite length x(n), » € N into a continuous frequency-
domain function X (/') according to the following equation [6]:

o0

X(f)= Y xme? (3.16)

n=—00

Such a transformation cannot be applied to the analysis of real signals, as it
assumes the possibility to calculate a continuum of functional values X (/) by means
of an infinite summation that is unfeasible in digital computers.

A more practical transformation is represented by the so-called discrete Fourier
series (DFS), a frequency analysis tool conceived for periodic sequences of infinite
length X(n) characterized by period N. The DFS can be seen as a frequency-discretized
version of the DTFT [6] and it involves a finite summation of N complex terms:

N-—1
Xy =Y 7me7 ¥,  0<k<N-1 (3.17)
n=0
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In particular, the DFS differs from the DTFT in that its input and output sequences
are both finite; it is therefore said to be the Fourier analysis of periodic discrete-time
functions.

When the DFS is used to represent a generic (i.e., not necessarily periodic) finite-
length sequence of samples x(n), n € [0, N — 1], it is called the DFT that is defined
as follows:

N—1
X2 2 oW, 0=k =N -1 G.18)
n=0

where w(n) is a discrete windowing function used to extract a portion of the infinite
length original sequence (see Section 3.3.4.3 for further details about windowing
functions),

N-1
B2 Zw(n) (3.19)
n=0

is the DFT normalization factor and
Wy £ eV = cos 2 /N) — j sin 27t /N), WiV =1,keN (3.20)

is the so-called rwiddle factor.
The DFT spectrum can be equivalently expressed in matrix form for a more
intuitive understanding of its logic:

X0 7 11 1 1 [ xo
X(k) = : W]g/k)N Wl(vzk)N W}(V(N_nk)N (k) (3.21)
| X (N —1) ] | 1 WAIIV*l W]{,V*Z wy | xv =1

where (-)y identifies the mod N operator. It is easy to show that the columns of matrix
[W{N] of (3.21) are linearly independent. Therefore, they are a base of CV.

3.3.2 DFT interpretation and relevant properties

The DFT is a sequence of complex values that are equally spaced in the frequency
spectrum and represent, under specific conditions, a portion of the Fourier transform
of the original continuous-time signal x(¢) (see Section 3.3.3 for further details about
the original assumptions to guarantee an exact matching between the DFT and the
Fourier transform). It is the result of a frequency decomposition of the finite-length
discrete signal that is projected onto the sinusoidal basis set W&, 0 <k <N — 1.

In order to correctly interpret the DFT spectrum obtained by applying (3.18) to
a generic real-valued finite sequence x(n), some considerations must be made.
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3.3.2.1 DFT periodicity
As shown in Section 3.3, the DFT of a finite sequence of real values x(n) is a
finite sequence of complex values X (k) (also called “bins”) defined in the interval
0 <k < N — 1. This does not mean that the DFT cannot be computed outside of the
interval 0 < k < N — 1, but simply that this will result into a periodic extension of
X (k) due to the periodicity of the theoretical spectrum of the sampled signal.
Usually, when analysing signals through the DFT, the convention is to associate
the DFT bins in the interval 0 < k£ < N/2 — 1 to the “positive” frequencies 0 < f <
F;/2 and the bins in the interval N /2 < k < N — 1 to the “negative” frequency range
F,/2 < f <0 (see also Figure 3.4(b)).

3.3.2.2 DFT symmetry

The DFT of a real-valued sequence is symmetric. In particular, the DFT bins in the
interval 0 <k <N /2 —1 (positive frequency range) are related to those in the interval
N/2 <k <N — 1 (negative frequency range) based on the following equivalences:

X (k) =X*((k)x)

Re (X(k)) = Re (X ((—k)n))

Im (X (k)) = — Im (X ((—K)w)) (3.22)
X ()l = 1X (k)

LX(k) = —ZX((—k)y)

As a consequence, when applying the DFT to real-valued signals, each frequency
component will appear twice in the DFT spectrum: once in the positive frequency
range (the so-called positive image) and once in the negative frequency range (the
so-called negative image).

3.3.2.3 DFT frequency discretization

According to (3.18), the DFT of the sequence x(n), n € [0, N — 1], provides samples
of the DTFT at N equally spaced discrete frequencies. In particular the kth DFT bin
represents the frequency content of the original signal at the normalized frequency
27k /N as it is the result of the projection of the finite-length sequence into the basis
vector characterized by that frequency (see (3.18)). As a consequence, consecutive
bins are separated by the normalized frequency interval 277 /N and the whole DFT
spectrum will cover the normalized frequency interval [0, 277 ] or equivalently, due to
the DFT periodicity, [—m, 7].

In order to derive a more practical scale for the DFT frequency axis, it should
be noted that the finite-length sequence x(n) is associated to specific instants in time
according to the adopted sampling rate F§. Therefore, based on the sampling rate, the
window length can be expressed as a function of time as 7 = N /F and, accordingly,
each basis vector W can be referred to an absolute frequency. In particular, the
bin for £ = 0 can be associated to the DC component (f = 0), the bin for £ =1
to a frequency f = 1/T and a generic kth bin to a frequency f = k/T. It is then
clear that the frequency separation between two consecutive bins is Af = 1/7 and
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can only be increased at the price of enlarging the window length 7. On the other
hand, the frequency range that can be represented with the DFT of the finite-length
sequence x(n) obtained by sampling the original signal x(¢) with a sampling rate F
is [F./2,F/2].

3.3.3 DFT effects

The DFT is often improperly considered as a “sampled” version of the continuous
Fourier transform. This statement is valid only if both of the following assumptions
are satisfied:

e the original signal x(¢) can be perfectly reconstructed from the discrete sequence
of samples x(n);

e the original signal x() is periodic and characterized by a period that is contained
an integer number of times in the chosen window length 7.

In general, these hypotheses do not always hold and, as demonstrated in
Section 3.3.1, the DFT can be correctly interpreted only from a precise knowledge of
the theoretical background of the Fourier analysis. In this respect, Figure 3.3 shows
the necessary steps required to analyse a continuous-time signal x(¢) with the DFT. The
first step is represented by the continuous-to-discrete-time conversion that allows to
transform the original continuous signal into an equivalent sequence of samples x(#).
This is typically performed by an A/D converter that, for the time being, is con-
sidered to be ideal; in other words, it is assumed to produce a sequence of equally
spaced samples that are equal to the original signal evaluated at regular time intervals
x(n) = x(nTy), being T, = 1/F; the sampling time as introduced before. The A/D
conversion process produces an infinite sequence of samples that, in order to be pro-
cessed by the DFT, needs to be clustered in finite portions containing the same number
of samples N. This is done by applying to the infinite sequence x(n) a finite duration
windowing function w(n). After this steps the DFT can be applied to each portion of
the sampled signal.

In what follows, each one of the above-mentioned steps is analytically modelled
and analysed using the Fourier transform theory. This will help understanding the pre-
viously mentioned assumptions and derive the two main DFT error sources, namely,
aliasing and spectral leakage.

x(7) Co.ntlnuou.s-to- x(n) oo w(n) - x(n) Dlscr-ete X(k)
discrete-time s ! Fourier >
: windowing
conversion transform
Sampling rate: F Window length: N

Figure 3.3 Main steps to apply a DFT-based digital signal processing technique to
a continuous-time signal x(t)
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3.3.3.1 Aliasing

As known, the sampling process can be modelled as the multiplication of the input
continuous signal x(¢) with a periodic impulse train s(¢) [6]:

x,(t) = x(n - T) = x(1) - s() (3.23)
=x(t) Y 8(t—nTy) (3.24)
= ) xnT)-8(t —nTy) (3.:25)

being § the unit impulse function or Dirac delta function.

The frequency-domain representation of this transformation can be given by
applying the Fourier transform theory and properties to (3.24). In particular, by recall-
ing that the Fourier transform of the product of two functions is the convolution of
the Fourier transforms § of the two functions, the Fourier transform of the sampled
signal can be analytically derived as follows:

X0 =x(0) Y 8t —nT)SX(f) = X(f) %k;j(f — %) (3.26)

n=—00

 Q— k
= = > X(f— ﬁ) (3.27)

where, to obtain (3.27), we have taken advantage of the property that the convolution
between a Dirac § function and any generic function is the value of the generic function
evaluated at the location of the Dirac § function.

As a consequence, the Fourier transform of the sampled signal is composed by
infinite copies of the spectrum X (f) (see Figure 3.4(a)) of the original continuous
signal x(¢). These copies are shifted by integer multiples of the sampling frequency
Fy = 1/T; and, then, superimposed to produce the periodic Fourier transform depicted
in Figure 3.4 for a band-limited original spectrum characterized by a bandwidth F,
and a sampling rate Fj.

From Figure 3.4(b) it is evident that, if the signal is band limited with bandwidth
F,, < F/2, the spectrum copies are not overlapping and the original spectrum X (1)
can be reconstructed by low-pass filtering the base-band copy of the spectrum X;(f').
On the other hand, if this is not the case and the bandwidth F,, of the original signal
is higher than half of the sampling rate F; (i.e., F,, > F;/2), the spectrum copies are
overlapping so that when they add together, the original spectrum X (/') is no longer
recoverable by low-pass filtering (see Figure 3.4(c)).

The latter phenomenon is called aliasing and it results into a distortion of the orig-
inal signal that cannot be any longer be reconstructed from the sampled signal. Such a
phenomenon is the basis of the well-known Nyquist—Shannon sampling theorem [6]:
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Figure 3.4  Effects of aliasing for a signal characterized by a main frequency
component at fy and a bandwidth F,,, sampled with a sampling rate F.
The figure shows, in order, the Fourier transforms of the
continuous-time signal (a) and the Fourier transform of the sampled
signal with a sampling rate respecting (b) or violating (c) the
Nyquist—Shannon theorem

Theorem 3.1 (Nyquist-Shannon). Let x(¢) be a band-limited signal and X (f) its
Fourier transform with

X(f)=0, f>F,

Let x(n) = x(nTy) (n € N) be an infinite sequence of equally spaced samples obtained
by sampling the continuous signal x(t) with a sampling frequency Fy = 1/T;. Then
x(¢) is uniquely determined by the sequence of samples x(n) = x(nTy) if

F, > 2F,

In other words, in order to be able to correctly reconstruct the signal x(¢) from the
infinite sequence of samples x(n), the original signal must be sampled at a sampling
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rate F; that must be at least two times higher than the maximum frequency component
contained in the original spectrum X (f).

3.3.3.2 Spectral leakage
Once the original continuous signal x(#) has been sampled, it must be clustered in
portions to be analysed by the DFT. This process is called windowing and consists in
multiplying the infinite sequence of samples x(n) by a specific windowing function
w(n) (see Figure 3.5).

In order to derive the effects of windowing, let us consider, without loss of
generality, a signal x(¢) that is only composed by a sinusoidal component at the
nominal frequency of the power system fj:

x(t) = A cos(2rfyt) (3.28)
As known, its Fourier transform is simply:
A
X(f)= ) [6(f —Jo) + 6(f + /o) (3.29)

x(2)
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Figure 3.5 Successive applications of sampling and windowing to obtain a portion
of samples of the original input signal x(t). The figure shows, in order,
(a) the continuous-time signal x(t), (b) the sampled signal x,(t), (c) the
rectangular windowing function w(t) and (d) the sampled and
windowed signal x;,,,(t)
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The windowing operation can be modelled as the multiplication between the
sampled sinusoidal signal x,(¢) and the adopted window function w(¢) (see Figure 3.5):

Xew(t) = w(t) - x5(1) = w(?) - [x(2) - 5(1)] (3.30)
= [w(®) - x()] - 5(2) (3.31)
= [w(t) - Acos2ufo)] - Y 8(t — nTy) (3.32)

By recalling that (i) the Fourier transform of the product between two functions
equals the convolution between the Fourier transform of each one of the two functions
and (ii) the convolution between a Dirac § function and any generic function is the
value of the generic function evaluated at the location of the Dirac é function, the
Fourier transform of x,,,(¢) can be computed as:

Xoul(t) B> Xou(f) = V() % X ()] % S(f) (3.33)
A - k
= S =)+ W +fo)l Fsk_zof(f —~ E)
(3.34)
R k k
=7 2 (g n) e w(rg )
(3.35)

In other words, the spectrum of the sampled and windowed signal x,,,(?) is
composed by infinite copies of the spectrum of the windowed signal W (f") x X(f)
shifted by integer multiples of the sampling rate F; = 1/7 and, then, superimposed.

In order to illustrate the effects of leakage on the DFT, let us consider just the
base-band copy of the spectrum of X;,,(f) for £ = 0. Additionally, let us adopt the
simplest windowing function, namely the rectangular one.’ The Fourier transform of
the rectangular window is the so-called sinc function (see Figure 3.6(a))

sinc (/T = 320U/ (3.36)
nfT
that is characterized by the peculiar property:
sinc (fT) |f=% =0 (3.37)

namely, the zero-crossing of the Fourier transform of the rectangular window is equally
spaced and happens at integer multiples of 1/7.

According to (3.35), the base-band copy of the Fourier transform of X;,, (/") will
be composed by two sinc functions centred around £f;. In case f; is a multiple of the
DEFT frequency resolution Af = 1/T (i.e., if the window contains an integer number

SNevertheless, such an analysis can be made with any other kind of window (see Section 3.3.4.3 for further
details about the various type of windowing functions).



94 Advances in power system modelling, control and stability analysis

sinc(zfT)
!
232 1 12 3
T T T T T T

Figure 3.6  Graphical representation of the spectral leakage effects on the Fourier
Transform (continuous line) and the DFT (black dots) when using a
rectangular window of length T to analyze a sinusoidal signal
characterized by a main tone at fy. In (a) the sinc function is depicted.
In (b) the effects of leakage are not visible since the adopted window
contains an integer number of periods of the input signal; they appear
in (c) where the adopted window length is not a multiple of the period
of the input signal

of periods of the signal), the zero-crossings of the translated sinc functions happen
exactly at multiples of 1/7. The only frequency that will have a non-zero projection
into the DFT basis set will be /' = %f; (i.e., the DFT bin with index k = fo/Af) and
the resulting DFT will be characterized by only two non-zero bins, at index +k (see
Figure 3.6(b)).

On the other hand, if f; is not a multiple of the frequency resolution Af (i.e., if
the window does not contain an integer number of periods of the signal), the zero-
crossings of the translated sinc functions do not happen exactly at multiples of 1/7.
Therefore, all the discrete frequencies will exhibit non-zero projections on the DFT
basis set even though the majority of the spectrum energy will still be concentrated
around " = f; (see Figure 3.6(c)).

This effect is the so-called spectral leakage and it evidently arises when the
sampling process is not synchronized with the fundamental tone of the signal under
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analysis and the DFT is computed over a non-integer number of cycles of the input
signal. As it will be discussed later, spectral leakage can be separated into short-term
and long-term spectral leakage: the first refers to the effects of the main lobe width of
the Fourier transform of the adopted window that can cause difficulties in identifying
the “true” maximum of a specific portion of the DFT spectrum. The latter, on the
other hand, refers to the effect caused by the side lobes (i.e., the “tails”) of the Fourier
transform of the adopted window that can generate the so-called spectral interference
between nearby tones.

3.3.3.3 Spectral sampling

As shown before, the DFT of the sequence x(n), n € [0, N — 1], provides samples of
the DTFT of the equivalent windowed signal, at N equally spaced discrete frequencies
fi=k-Af =k/T,being —N/2 <k < N/2 — 1(see Figure 3.6). In Section 3.3.3.2,
we have shown how such a reduced frequency resolution can turn out to be beneficial
when the input signal x(n) is composed by a single tone and sampled coherently with
respect to its frequency (i.e., when Fy; = k - fy, being F; and f; the sampling rate and
the main-tone frequency, respectively). Nevertheless, coherent sampling is purely
ideal and the DFT energy is spread along the whole spectrum. Consequently, the
DFT bin values and the frequency axis discretization change based on the adopted
number of samples N and window length 7.

In general, when the target is identifying the parameters of a signal, the frequency
resolution Af plays a major role as it defines the accuracy in locating the correct
position in the frequency spectrum of the tone under analysis. As we will see later, the
IpDFT method will partially overcome such a limitation with a proper interpolation
of the DFT bins.

3.3.4 DFT parameters

The DFT output can be modified by acting on three main parameters: the sampling
rate F, the window length 7', and the window profile w(n). Together, they determine
the amount of aliasing and spectral leakage and the frequency resolution of the DFT.

3.3.4.1 Sampling rate

The sampling rate F defines the frequency range that can be correctly analysed with
the DFT. It is limited on one side by the Nyquist—-Shannon sampling theorem (see
Section 3.3.3.1) and on the other side by the hardware limitations of the platform
where the DFT has to be implemented. In particular, in the real world, F| is limited by
the maximum and possible sampling rates of the adopted A/D conversion technology
and by the processing and data storage capabilities of the processing unit (the higher
the sampling rate the higher the amount of samples to be processed in real time by
the DFT).

3.3.4.2 Window length

The window length is the most critical parameter when analysing the frequency content
of a finite sequence of samples through the DFT. Its selection depends on the specific
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field of application and it is typically chosen as a trade-off between the required
frequency resolution and the desired bandwidth.

According to what stated in the previous sections, the window length 7' defines
the DFT frequency resolution Af = 1/T that determines the uncertainty to correctly
identify the position of a tone and, therefore, the uncertainty in identifying its param-
eters. In Section 3.3.3.2, we have also shown how the window length 7 influences
the frequency separation between the zero-crossings of the sinc function. This, in
turn, determines the main lobe width, namely the DFT capability to detect nearby
tones, and the side-lobes decaying rate, namely the amount of spectral interference
produced by each tone of the spectrum. In general, the longer the window length T,
the higher the possibility to detect nearby tones and the lower the effects of the spec-
tral interference produced by near-by tones (see Figure 3.7). Nevertheless, the higher
the window length the more probable the possibility that the waveform parameters
within the window length are not constant at that therefore the DFT assumptions are
not respected, introducing therefore an inherent error in the DFT spectrum.

In this respect, it is worth pointing out that the window length 7 is a crucial
parameter when applying the DFT to SE. As defined in Reference 1 (see also Section
3.5.1.3), the RTs and measurement reporting latencies are two very important charac-
teristics of a PMU that are mainly influenced by the adopted window length. In general,
the lower the window length, the lower the RT and measurement reporting latencies
and therefore the higher the possibility to use the PMU for specific applications that
require fast response and reduced latencies (e.g., power system protections).

Last but not least, it should be observed that the window length 7' determines,
together with the sampling rate F, the number of samples N = T /F; to be processed
by the DFT. Even though this is usually forgotten, the number of samples is an
important parameter when processing waveforms corrupted by white noise. As shown

XN X(f)

Fourier transform ——— Tone images

(b)

Figure 3.7 Effects of the window length on the detectability of a nearby tone
characterized by a frequency fi and half of the amplitude of the main
tone at fy. In panel (a), a shorter window length does not allow to
detect the tone at f| whereas this is possible in panel (b) where a longer
window length is adopted
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Figure 3.8 Comparison between the time and frequency profiles of the rectangular
(continuous line) and the Hanning (dashed line) window

in Reference 31, the effects of white noise on the DFT uncertainty can be effectively
reduced by increasing the number of samples to be processed.

3.3.4.3 Window profile

In Section 3.3.3.2, it has been shown that spectral leakage arises when the input signal
is not periodic within the window length. This has been demonstrated in the case of a
rectangular window function but the proposed analysis could be extended to any kind
of windows. Nevertheless, the spectral leakage effects might be reduced by adopting
specific windowing functions.

As shown in Reference 29, the characteristics of a window function can be
expressed in terms of several metrics. For our purposes we can restrict the analysis to:

e the main lobe width, namely, the width of the highest lobe of the adopted window
(see Figure 3.6 in the case of a rectangular window), that is typically measured by
evaluating the —3 dB bandwidth of the Fourier transform of the adopted window;

e the side-lobe levels and decaying rate, namely, the relative height of the second,
third, etc. lobes with respect to the height of the main one and their characteristic
decaying rate.

Whereas both parameters impact the tone detectability, namely the capability to
detect two nearby tones through DFT, the latter is also responsible of the aforemen-
tioned spectral interference, namely the detrimental effect that neighbouring tones
produce on the main tone under analysis. This effect is quite noticeable when using
a rectangular window (see Figure 3.8) that, besides being the windowing function
with the minimum main lobe width, it is characterized by the highest side lobes (see
Reference 29 for a detailed analysis of the window parameters). To improve this char-
acteristic, Harris in Reference 29 has first derived a set of bell-shaped windowing
functions that, by reducing the discontinuities at the edge of a window, reduce the
side-lobe levels. Unfortunately, this comes at the price of enlarging the main lobe
width and, therefore, reducing the tone detectability (see Figure 3.8).
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3.3.5 DFT calculation in real time

If not properly designed and implemented, the DFT calculation might represent a
considerable bottleneck when running a DFT-based SE algorithm in a real-time envi-
ronment. As discussed in Section 3.5.1.3, it also affect both measurement reporting
latencies and achievable reporting rates. Indeed, particularly when the DFT is calcu-
lated over a discrete sequence of samples obtained with a sampling rate of some
tens of kilohertz, the high number of samples within a single observation win-
dow makes the DFT calculation according to (3.18) computationally intensive. This,
combined with the maximum reporting rate and measurement latency requirements
defined in Reference 1, makes the development of a PMU based on the DFT, a quite
challenging task.

In this respect, in order to improve both latencies and throughput, several efficient
techniques to compute the DFT spectrum have been proposed in the literature. They
can be separated into two main categories: recursive and non-recursive algorithms.

Within the group of non-recursive algorithms the well-known fast Fourier
transform (FFT) algorithm (e.g., Reference 42) is widely used. Typically, this imple-
mentation is adopted to perform harmonic analysis over an extended portion of the
spectrum even though its deployment on embedded system is usually onerous. When,
on the other hand, only a subset of the overall DFT spectrum is used to estimate
the synchrophasor (see for instance Reference 24), the so-called short-time Fourier
transform (STFT) turns out to be very effective [6]. In both cases, the measurement
reporting latencies are proportional to the amount of samples to be processed. As a
consequence, the algorithm throughput can only be improved at the cost of deterio-
rating the PMU accuracy levels. The first option is to reduce the sampling rate and
eventually originate aliasing (see Section 3.3.3.1); the other one refers to the adoption
of shorter window lengths and potentially increase the spectral leakage effects (see
Section 3.3.3.2).

In order to increase the throughput without decreasing the precision of the adopted
DFT-based SE algorithm, DFT can be calculated via recursive algorithms that are
usually characterized by a lower number of operations to update the values of a
single DFT bin (e.g., Reference 31). Despite this evident advantage with respect to
the class of non-recursive DFT algorithms, the two categories do not generally have
identical performances. In particular, the majority of the recursive algorithms suffers
of errors due to either the approximations made to perform the recursive update, or
the accumulation of the quantization errors produced by the finite word length of
computers [43].

A very effective method for sample-by-sample DFT bins computation is repre-
sented by the so-called sliding-DFT (SDFT) technique presented in Reference 44.
This reference demonstrates the efficiency of this method in comparison with the
popular Goertzel algorithm and its computational advantages over the more tradi-
tional DFT and FFT, but also its drawbacks. Unfortunately, the approach proposed
in Reference 44 is only marginally stable. In particular, if the truncation errors on
the computation of the filter coefficients are not severe, the SDFT is bounded-input,
bounded-output stable. Otherwise, the algorithm suffers from accumulated errors
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Table 3.1 Characteristic computational complexity and numerical
stability of the STFT, SDFT (stable and unstable version) and
MSDFT methods (M is the number of samples within a
window of length T)

Method Computational workload Numerical
stability

ADD MUL

Short-time Fourier transform (STFT) M
Sliding DFT (SDFT) 4
Guaranteed-stable SDFT (rSDFT) 5
Modulated sliding DFT (MSDFT) 10

R R
ANANE N

and is, consequently, potentially unstable. Whereas common approaches found in the
literature [44, 45] face this problem compromising results accuracy for guaranteed
stability, the method proposed in Reference 46 and called modulated sliding DFT
(MSDFT) is guaranteed stable without sacrificing accuracy.

In what follows, three of the most efficient techniques to compute a portion of the
DFT spectrum, namely, the STFT, SDFT and MSDFT, will be presented and analysed
with respect to their precision and computational complexity (see also Table 3.1).

3.3.5.1 Short-time Fourier transform

Starting from what formulated in (3.18), the DFT can be potentially updated every
time-step #, based on the most recent set of samples {x(n — N + 1),x(n — N +2),...,
x(n)}, according to the following time-dependent equation:

N-1

Xi(n) =Y " x(q+m) - Wy* (3.38)

m=0

being N the number of samples within the window of length 7',  the time-step index, &
the DFT-bin index, g = n — N + 1, and Wy *" = e727/N the DFT complex twiddle
factor.

The derived equation is the so-called STFT, namely the simplest technique to
apply the DFT theory to a real signal. It assumes to split the signal into partially
overlapping block of samples of equal length N and apply the DFT computation
independently to each one of them. Consequently, such a calculation is extremely
inefficient: although two consecutive estimations are derived from a partially over-
lapping windows, in order to update the DFT estimation, it assumes to re-process
already analysed portions of the signal. Nevertheless, such a technique can still be
applied to SE, as long as the PMU does not need to report estimated data too frequently
and the adopted hardware platform has enough available computational resources to
host a parallel computation of the DFT, according to (3.38), over the whole set of
input channels.
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Figure 3.9 Digital timing diagram of a hypothetical PMU that estimates
synchrophasors 50 times per second using the STFT technique. A
four-stage pipeline is here adopted to achieve the desired reporting rate
with a three-cycle window to calculate the DFT and estimate the
synchrophasor (SE stands for synchrophasor estimation)

For instance, in order to achieve the highest reporting rates required by the IEEE
Std. [1] (i.e., a new estimation every nominal period of the power system) with a three-
cycle DFT-based SE algorithm, one solution would be to apply the STFT calculation
expressed by (3.38) to partially overlapped portions of data. As shown in Figure 3.9,
a four-stage pipeline architecture for each input channel can be adopted: based on the
rising edges of a square waveform aligned to PPS and characterized by a frequency
corresponding to the PMU reporting rate, each pipeline will alternately collects the
required amount of data (N samples) in dedicated memories and, once they have been
filled, activates a flag that triggers the SE on the previously acquired set of data.

3.3.5.2 Sliding DFT

The SDFT structure is depicted in Figure 3.10(a) and, as demonstrated in Reference 44,
it can be derived from (3.18) as follows:

N—1

Xi(n) = Y _x(q+m)- Wy (3.39)
m=0
N-1
=Y xg+m—1)- WV —x(g— 1) Wi +x(g+ N - 1)
m=0
D (3.40)
N—-1
= We- Y xlg+m—1) Wt —x(g—1)- Wi +x(g+N — 1)
m=0
WY (3.41)
= WXt —1) —x(g — 1) +x(g+N — 1) (3.42)

= WE (X(n — 1) — x(n — N) + x(n)) (3.43)
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Figure 3.10 Structure of the sliding DFT (a) and of the modulated sliding DFT
(b) (adapted from Reference 46)

As it can be noticed by looking at (3.43), the SDFT is a quite efficient method as, it
allows to update the values of a single DFT bin every time a new sample is acquired
with few multiplication and additions (see also Table 3.1).

As previously mentioned, the SDFT filter is not numerically stable and suffers
from accumulated errors. Common approaches that can be found in the literature
[44, 45] face this problem compromising results accuracy for guaranteed stability. This
is the case of the method presented in Reference 44 where the stability is guaranteed
by including in the DFT formula a damping factor » that force the SDFT pole to reside
within the z-domain’s unit circle (this method is here referenced as rSDFT):

Xi(n) = rW]fj - (Xi(n—1) — rNx(n — N) + x(n)) (3.44)

In this context, the next section will examine a sample-by-sample DFT update
method, called MSDFT that is guaranteed stable without sacrificing accuracy [46].

3.3.5.3 Modulated sliding DFT

With reference to (3.43), it is easy to observe that the recursive formula for the
computation of X; when & = 0 does not involve the complex twiddle factor and is,
therefore, by definition stable:

Xo(n) = Xo(n — 1) — x(n — m) 4+ x(n) (3.45)

The MSDFT takes advantage of this SDFT property in order to derive a recursive
formula for the DFT computation that is intrinsically stable.

In particular, by taking advantage of the so-called Fourier modulation property
[6], the generic kth DFT bin can be shifted to the position £ = 0 multiplying the input
signal by the complex twiddle factor W,

X(n)=> Wy Xo(n) = Xo(n — 1) —x(n — N)- W™ 4x(n)- Wi*  (3.46)
= Xo(n — 1)+ Wyt . (=x(n — N) + x(n)) (3.47)

where (3.47) is obtained thanks to the periodicity of the modulating sequence W, |
The twiddle factor modulation only introduces a phase shift that is changing with
index m: ZWy* = 0 for m = 0, it increases by the Wy factor at each iteration and
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is periodically reset to 0 every N samples. Indeed, at every iteration the modulating
sequence can be recursively computed as:

Wy = w Y wk, om=0,1,...,N -1 (3.48)

It is clear that, in order to prevent that accumulated errors corrupt our estimation,
the modulating sequence must be reset to 1 every N samples.® In view of this, the kth
bin of the DFT can be derived from (3.47), as:

Xi(n) = WiV Xo(n) (3.49)
= Wy (Xo(n = 1) 4+ Wi - (=x(n — N) + x(n))) (3.50)

where W, K +1) compensate for the phase-shift due to the modulating sequence.
Equation (3.50) defines the MSDFT method for the update of the value of a single
bin of the entire DFT spectrum and the related block scheme is given in Figure 3.10(b).

3.3.5.4 Integrating the MSDFT with signal windowing

As already discussed in Section 3.3.4.3, signal windowing is a powerful technique
that allows to reduce the effects of long-range spectral leakage. Windowing is applied
as in the time domain by weighting a finite sequence of samples with a particular
window profile like the Hanning one (see Section 3.3.4.3):

x,(n) =x(n)-wn), 0<n<N-1 (3.51)

However, windowing by time-domain multiplication would compromise the compu-
tational simplicity of the MSDFT or any other sample-by-sample DFT calculation
technique. For this reason, when adopting this kind of methods, it is of common use
to apply the signal windowing in the frequency domain, namely after the DFT has
been computed. Indeed, by recalling that the multiplication between two functions
in the time domain corresponds to the convolution between the Fourier transform of
the two functions in the frequency domain, the time-domain multiplication could be
replaced by a frequency-domain convolution and obtain equivalent results.

In particular, in the case of the Hanning window, this will result into the following
linear combination of adjacent DFT bins X (n):

Xi(n) = —0.25 - X;_1(n) + 0.5 - X3(n) — 0.25 - Xjp1 () (3.52)

From (3.52), it is clear that, in order to compute three windowed DFT bins, we need to
compute five MSDFT bins, namely, those associated to indices k,, + {—2, —1,0, 1,2}.

3.4 DFT-based SE algorithms

The SE algorithm is definitely the most relevant and challenging component of a
PMU. The main task of an SE algorithm is to identify and assess the parameters of the
fundamental tone of a signal by using a previously acquired set of samples representing

%To be noticed that, for practical implementation, the modulating sequence can be either (i) precomputed
and stored into memory or (ii) computed online based on (3.48).
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a portion of an acquired waveform (i.e., node voltage and/or branch/nodal current).
As a consequence, it mainly influences not only the PMU measurement uncertainty,
but also the PMU measurement reporting latency and the maximum achievable
reporting rate.

This section first reviews the literature on SE algorithms based on the DFT. This
category is characterized by some inherent advantages when applied to the extrac-
tion of the main-tone parameter, namely: (i) the inherent DFT capability to isolate
and identify the main tone of a discrete sinusoidal signal and (ii) reject close-by
harmonics; (iii) the relatively low computational complexity, particularly when the
DFT spectrum is computed through one of the well-known algorithms (e.g., FFT
or sliding DFT). Nevertheless, these qualities come with non-negligible drawbacks
and limitations characterizing the DFT theory that assumes a periodic signal with
time-invariant parameters, at least along the observation window. The latter, on the
one hand, should be as short as possible to be closer to the above-mentioned quasi-
steady-state hypothesis also during power system transient; on the other hand, longer
windows are needed when interested in identifying close-by tones and rejecting har-
monic and inter-harmonic components. Indeed, as demonstrated in Section 3.3, the
observation window 7 is inversely proportional to the DFT frequency resolution, as
it defines both the frequency separation between consecutive DFT bins and the main
lobe width.

In this respect, Section 3.4.1 presents the IpDFT, a well-established technique
to estimate the parameters of a waveform out of a finite sequence of samples, which
reduces the effects of spectral leakage and overcome the limitations introduced by
adopting a relatively short window length. Finally, on the basis of Reference 47, Sec-
tion 3.4.2 illustrates a computationally affordable method that is capable of improving
the performances of standard IpDFT methods and to keep the same static and dynamic
performances independently of the adopted window length.

3.4.1 The Interpolated-DFT technique

Asreported in Section 3.3.3, DFT-based SE algorithms are characterized by three main
sources of uncertainty: aliasing, spectral leakage and spectral sampling. Whereas the
effects of aliasing can be disregarded by simply increasing the sampling frequency
to values much larger than the highest spectrum component contained in the sam-
pled signal, the combined effects of spectral leakage and spectral sampling can be
detrimental if not properly treated.

As discussed in Section 3.3.3.2, spectral leakage arises when the sampling
process is not synchronized with the fundamental tone of the signal under anal-
ysis and the DFT is computed over a non-integer number of cycles of the input
signal [30]. Since the precise synchronization of the sampling process with the
fundamental frequency component of the signal is purely theoretical (indeed such
synchronization involves the a priori knowledge of the signal main tone, which
is, by hypothesis, unknown), several approaches have been proposed to reduce
this bias.
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Among them the IpDFT technique has outperformed the others for its higher
accuracies combined with a lower computational complexity. Such a method refers
to the usage of:

e windowing functions aiming at mitigating the effect of long-range spectral leakage
[29, 48];

e proper DFT interpolation schemes aiming at correcting the effects of the short-
range leakage and reducing the inaccuracies introduced by the DFT spectral
sampling (e.g., References 23,24).

The IpDFT problem has been originally defined for a discrete sequence of sam-
ples windowed using the rectangular window [23]. In order to reduce the effects of
long-range spectral leakage, the input sequence can be windowed using one of the
“special” windowing functions defined in the literature (see References 29,48). The
first to combine such an approach with the IpDFT technique was Grandke in Ref-
erence 24 using the Hanning window. More recently, the IpDFT problem has been
formulated using various windowing functions belonging to the Rife—Vincent class I
(RVCI) [49] or parametric windowing function non-belonging to the cosine windows
class, like Kaiser—Bessel or Dolph—Chebyshev windows [50].

In what follows, the IpDFT algorithm will be first formulated and solved for
the case of Hanning window; then its performances are analysed, with a spe-
cific focus on the effect of the spectral interference on the accuracy of the IpDFT
method.

3.4.1.1 Formulation of the IpDFT problem

The IpDFT is a technique that allows to estimate the parameters of a tone (i.e., its
frequency, amplitude, and phase) by interpolating the DFT spectrum obtained from
a finite sequence of N samples of a discrete signal x(n) that includes the tone under
analysis.

In this respect, let us consider the following finite sequence obtained by sampling
with a sampling rate F; = 1/7 a continuous waveform x(¢) characterized by a single
frequency component at frequency fy:

x(n) = Acos CrfonTs +¢), 0<n<N-—1 (3.53)

Let us assume to window the sequence x(n) with a known windowing function
w(n) and compute the DFT of the obtained sequence using (3.18).

As demonstrated in Section 3.3.3.2, if the window does not contain an integer
number of periods of the signal x(n) leakage occurs and the main tone of the signal
will be located between two consecutive DFT bins (see Figure 3.11). Its frequency
can therefore be expressed as follows:

Jo = (kn + 8)Af (3.54)

being %, the index of the DFT bin characterized by the highest amplitude and
—0.5 < § < 0.5 a fractional correction term.
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Figure 3.11 Zoom on the portion of the DFT spectrum surrounding the bin X (k,,)
that highlights the correction term § and the spectral contributions
produced by the positive (continuous line) and negative (dashed line)
images of the spectrum

From (3.54), the IpDFT problem can be formulated as follows:

Based on the DFT spectrum X (k) of the signal x(n) analysed with the known
windowing function w(n), find the correction term § that better approximates
the exact location of the main spectrum tone.

According to the adopted window profile and number of DFT bins used to per-
form the interpolation, various analytical or approximated solutions to the problem
can be given [49]. In what follows, the solution will be presented for a signal windowed
using a Hanning window (see (3.55)—(3.57)) and using a two-point interpolation.

3.4.1.2 Solution of the IpDFT problem using
the Hanning window

The Hanning window (also known as Hann window) is defined as:

2mn

wia(n) = l_cc’zﬁ nel0,N — 1] (3.55)

and its Fourier transform is

2 2
Wy (w) = —0.25- Dy (a) — W”) 0.5 Dy(w)—0.25-Dy (a) + W”) (3.56)
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being Dy (w) the Dirichlet kernel defined as:

s (N
—jo(N=1)/2 Sm(T)
T w
sin(2)
also known as the generalized Fourier transform of the rectangular window.

As demonstrated in Section 3.3, the spectrum of the sampled signal x(#) in (3.53)
can be expressed in terms of its positive and negative images:

Dy(w) =e 3.57)

X(f)=X"(H+X () (3.58)

= %lef‘/f Wu(f —fo) + ge_j"’ Wu(f + 1) (3.59)

being Wy (f) the Fourier transform of the Hanning window, 4 and  the amplitude
and instantaneous phase of the signal x(¢), respectively.

Assuming that the effects of leakage are properly compensated by windowing,
we can reasonably neglect the long-range spectral leakage produced by the negative
spectrum image on the positive frequency range and assume that the DFT bins in the
positive frequency range are only generated from the positive image of the spectrum,
namely:

X(ky~X*(k), 0<k=< (3.60)

The fractional term § can be estimated starting from the ratio between the two
highest bins of the DFT X (k,,) and X (k,, + ¢) that, for N > 0, can be approximated
as follows [49]:

X(kn+8) Wi (e—0)-%)

X(ky) A 7, (—8 . %) (3.61)
where Wy (-) is the Fourier transform of the Hanning window (see (3.56)) and
S bt i 0
If N > 0, the following approximation holds:
SHTV-UN) o 4 % (3.63)

and the absolute value of W (w) can be approximated as:

. (wN 0.25 0.5 0.25
sm(—)' . ‘— - + (3.64)
2 sin

Wl = (-5 sn(3) S5+
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By replacing (3.64) in (3.61) and recalling that lim,_, ¢ sin (x) = x, we get:

Xk +) | Wa (e —8)- %)
Xtk (03]

N
N 0.25 0.5 0.25 / 025 05 5 0.25
Ml Tert s—ets—e—1|/ sy T
_ 0.5 8(8 + 1D -1)
T 8(8 — £)(8 — 2¢) —-0.5
d+e¢
= 3.65
5 —2¢ (365
that, solved for the frequency correction § gives:
-~ 2 | X (ki — | X (ki
5 21+ 0) = X (k) .66

X (k)| + 1X (K + €)

where the ™ symbol was used to indicate the estimation of the fractional correction
term &. The waveforms parameters (i.e., its frequency, amplitude and phase) can then
be computed as follows:

T = Ghn+OAf (3.67)
A = |X(k, 52— 3.68

| X ()| (5)‘| (3.68)
¢ = LX(ky)— 78 (3.69)

3.4.1.3 Optimal selection of the IpDFT parameters for SE
The relevant parameters of the [pDFT technique should be properly chosen according
to the characteristics of the input sequence x(») (i.c., the DFT spectrum X (k)).

In this respect, this section presents the optimal selection of the three main [pDFT
parameters (i.e., the sampling rate, the window length, and the window profile) when
applying such a technique to SE and argument their choice by making reference to the
signal model presented in Section 3.2.1 (see (3.2)). In particular, in the following of
this chapter, both the SE algorithm formulation and the discussion of the experimental
results will make reference to a DFT calculated on a sequence of samples obtained
by sampling the input signal x(¢) with a sampling rate F of 50 kHz over a window
length T containing three periods of a waveform at the nominal frequency of a power
system fy and windowed using a Hanning window.

Sampling rate

The IpDFT sampling rate F; must be primarily selected following the considerations
presented in Section 3.3.4.1 regarding the detrimental effects of aliasing. In this
respect, it is worth pointing out that in the field of power system, harmonic and inter-
harmonic components rarely exceed few kilohertz and consequently a PMU that does
not adopt any anti-aliasing filter must sample the signal with a sampling rate F; of
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Figure 3.12  Behaviour of the real (continuous line) and imaginary parts (dashed
line) of e N=VN) _ (=1 £ ji/N) (see (3.63)) as a function of the
number of samples N

at least 10 kHz. Additionally, a relatively high sampling rate allows to process a higher
number of samples and consequently mitigate the effects of wideband noise.

Last but not least, it should not be forgotten that, the sampling rate F; together
with the window length 7', defines the number of samples N to be processed by DFT.
In this respect, it is worth pointing out that the IpDFT solution given in (3.66) for
the case of the Hanning window (the same hypothesis is actually valid for any [pDFT
estimator based on the class of RVCI windows) can only be obtained if the number of
samples N is sufficiently large so that the approximation presented in (3.63) is valid.
Figure 3.12 shows the residuals of (3.63). As it can be seen, by adopting a relatively
high sampling rate F;, the number of samples N can be increased up to values where
the effects of such an approximation are not visible and it can be considered exact.

Window length

Asreported in Section 3.3.4.2, the window length T is the most critical DFT parameter,
and it must be selected first of all to guarantee the stationarity of the sequence of
samples x(n). Additionally, as reported in Section 3.5.1.3, window lengths directly
affect the PMU RTs and measurement reporting latencies. In this respect, a shorter
window length including, at most, four periods of a signal at the nominal frequency
of the power system f, more easily ensures the stationarity hypothesis in most of the
PMU operating conditions. At the same time, it guarantees to satisfy the most stringent
PMU RT and measurement reporting latency requirements dictated by Reference 1,
particularly with respect to the P-class measurement requirements (see also Section
3.5.1.2).

Nevertheless, this choice comes with at the price of a reduced DFT frequency
resolution that, depending on the adopted window profile, might not allow to detect
nearby tones like inter- or sub-harmonics. Furthermore, as it will be discussed in the
next section, shorter window lengths amplify the effect of long-range spectral leakage
and therefore the spectral interference between close-by tones.
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Window profile

The solution of the IpDFT problem (Section 3.4.1.2) has been presented when using
a Hanning window in order to reduce the effects of long-range spectral leakage. This
windowing function has demonstrated to represent a good trade-off between the long-
range spectral leakage suppression (i.e., the side-lobe levels) and the DFT frequency
resolution (i.e., the main lobe width). In particular, compared to the rectangular
window, the Hanning window is characterized by a wider (almost double) main lobe
but a much higher side-lobes decaying rate (see Figure 3.8).

Nevertheless, a similar solution could be analytically derived for any other
function belonging to the category of RVCI windows or based on a polynomial
approximation for the class of parametric non-cosine windows (see Reference 49
for the IpDFT solution for both category of windows).

In general, the window profile must be chosen according to the field of application
of the IpDFT technique. Whether the interest is reducing the effect of long-range
spectral leakage produced by interfering tones or it is identifying and estimating the
parameters of nearby frequency components, a window profile characterized by lower
side lobes or a narrower main lobe must be preferred, respectively.

3.4.1.4 IpDFT sensitivity to spectral interference

The IpDFT is a powerful method to artificially increase the DFT frequency resolution,
and accurately estimate the parameters of a sinusoidal waveform. Nevertheless, its
accuracy is mainly limited by the spectral interference produced by nearby tones that
might not allow to distinguish the portion of spectrum that has been generated by the
tone under analysis from other frequency components.

Indeed, as reported in Sections 3.4.1.1 and 3.4.1.2, the main hypothesis behind
the analytical solution of the [pDFT problem is that the DFT bins used to perform the
interpolation are only generated by the tone under analysis. As a consequence, the
IpDFT theory assumes that, independently of the adopted window profile, the DFT
spectrum only contains a single component characterized by a frequency f; > Af,
so that the positive and negative images of the spectrum are sufficiently distant and
the approximation expressed by (3.60) is satisfied. In case the input signal includes
more frequency components (e.g., harmonics and/or inter- and sub-harmonics), they
should be sufficiently separate so that the effects of long-range spectral leakage can
be neglected. If these assumptions are not satisfied, the DFT bins used to perform the
interpolation, and therefore the IpDFT estimations, might be partially biased by the
tails of the nearby tones. Eventually, if the energy content of the spectral interference
exceed the one of the tone under analysis, the tone detectability is not even guaranteed.

As reported in the previous section, the application of the [pDFT technique to the
field of SE requires the adoption of quite short windows, which contain few periods
of the signal under analysis, in order to assume the stationarity of the signal and, at the
same time, reduce the PMU RTs and measurement reporting latencies. This choice
causes the energy of the DFT spectrum to be concentrated in the lower frequency
range and the positive and negative images of the spectrum to be relatively close.
Independently of the adopted window profile, the side lobes of the negative image
of the spectrum leak in the positive frequency range and bias the DFT bins used to
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perform the interpolation that are not only originated by the positive image of X (k)
but also influenced by the tails produced by the negative image of the spectrum (see
Figure 3.11). The assumption expressed by (3.60) cannot be satisfied and the IpDFT
estimations are consequently degraded.

This phenomenon can be slightly reduced by adopting windowing functions with
good side-lobe behaviours [48], but most of the time, this is not sufficient to achieve
the higher accuracies required by certain synchrophasor-based applications. In this
respect, the following of this chapter will focus on the formulation of an SE algo-
rithm that enhances the IpDFT performances by combining such a technique with an
iterative approach for the compensation of the spectral interference produced by the
negative image of the main tone of the spectrum.

3.4.2 The iterative-Interpolated DFT technique

The performances of any I[pDFT method are definitely related to the accuracy in the
estimation of the fractional term & that, ideally, could be improved by processing
a DFT spectrum that only contains the positive image of the tone under analysis.
In this respect, in what follows, an iterative technique for the compensation of the
spectral interference produced by the negative image of the main tone of the spectrum
is proposed and combined with the two-point [pDFT estimator presented in Section
3.4.1.2, to derive a novel SE algorithm that hereafter will be called i-IpDFT.

3.4.2.1 Iterative compensation of the spectral interference

By neglecting the spectral interference produced by other tones, the DFT spectrum
of the signal x(n) in (3.53) can be expressed, as shown in (3.58), in function of the
contribution of the positive and negative images of the main tone. As a consequence,
the highest and second-highest DFT bins, which are used to estimate § according to
(3.66), can be expressed as:

174 . A
X(ky) = — [—eﬂ” W (=8) + =e V- W 2k + 8)] (3.70)
B|2 2
174 . A4
Xk +6) = 3 [Ee/‘/’ W (e —8)+ € VoW Qky 4+ + 5)} (3.71)

where W(-) is the Fourier transform of the adopted windowing function and the
spectral interference coming from the negative spectrum image is represented by the
following terms:

X~ (k,) & é [gej‘” W 2k, + 3)} (3.72)

174
X (kp+e) 2 3 [Ee—“’f W 2k, + & + 5)} (3.73)

Since W () is analytically known once the windowing function has been selected,
the amount of spectral interference generated by the negative image of the spectrum
on the above DFT bins can be estimated. In particular, (3.72) and (3.73) can be
evaluated using an initial estimation of the waveform parameters A and @ obtained
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using the classical IpDFT technique presented in Section 3.4.1.2. These estimations
can then be subtracted from the DFT bins to reduce the spectral interference so that
the “compensated” DFT bins

X (k) = X (k) — X~ (ki) (3.74)
Xk 4 €) = Xk + &) — X (ky +¢) (3.75)

are mostly generated by the positive image of the spectrum.

Then, the estimation of the fractional term § and the related waveform parameters
can be improved by re-using the I[pDFT algorithm on the new set of DFT bins. This
process can be either iterated a predefined number of times or performed until a given
convergence criterion is achieved and bring to a more accurate estimation of the set
of parameters { f ,Z , @ }.

3.4.2.2 Formulation of the i-IpDFT method

The proposed i-IpDFT SE algorithm is presented, on the basis of Reference 47, in
form of a pseudo-code (see next page) that explains the fundamental steps necessary
to correctly estimate the synchrophasor according to the i-IpDFT technique.

First, the continuous input waveform (voltage or current) is sampled with a
sampling rate F; that is sufficiently high to neglect the effects of aliasing on the
DFT spectrum. In this respect, in Section 3.4.1.3, we have adopted a sampling rate
F of 50 kHz. The samples are then collected into a finite sequence of length N that
should be sufficiently short so that the signal can be assumed stationary at least within
its boundaries. In this respect, a window containing three periods of a signal at the
nominal frequency fy (namely, 7 = NT; = 3/fy) has proven to be a good trade-off
between the accuracy and RT requirements (see Section 3.4.1.3). The finite sequence
of samples is then windowed using a Hanning window and the three highest bins of the
DFT, namely those corresponding to DFT indices k£ = k,, + {—1,0, +1}, computed
according to what stated in (3.18).”

Next, a first estimation of the parameters of the main tone can be given according
to the classical two-point IpDFT technique based on a Hanning window formulated
in Section 3.4.1.2. Although such an estimation could be considerably affected by the
effect of the spectral interference produced by the image component, it can be used
to approximate the effects of its “tails” on the two highest DFT bins that are used
to estimate & according to what stated in Section 3.4.2.1. Such an amount can be
subtracted from the original DFT spectrum to reduce the effect of spectral interference
and the waveform parameters estimation refined. As shown in the pseudo-code, this
approach is either iterated a predefined amount of time or until the spectral interference
compensation does not bring any additional advantage.

As it can be noticed, the i-IpDFT technique has a clear advantage with respect
to other SE methods: the algorithm is composed by few well-defined macro-
functionalities that are often recalled along the execution of the pseudo-code through

"It is worth pointing out that by adopting a sufficiently short window length T, the index corresponding to
the DFT maximum £, can be fixed a priori and calculated as &, = [fo/Af] = [foIN/F,]. Consequently,
there is no need to perform a maximum search on the DFT bins.
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a for loop structure. The i-IpDFT SE algorithm can therefore exploit the speed of
high-speed digital architectures like field programmable gate arrays (FPGAs) and
reduce the required amount of hardware resources simply reusing already allocated
portion of the hardware design.

3.5 Performance analysis of SE algorithm

This section first presents a procedure to assess the performances of SE algorithms
that is based on the IEEE Std. C37.118. Next, it verifies the performances of the
i-IpDFT SE algorithms by making reference to the most relevant tests defined in
Reference 1.

The reader should consider that this section is only meant to quantify the perfor-
mances of the adopted SE algorithm and does not deal with the other components of
a PMU that might introduce a further and non-negligible uncertainty to the estimated
synchrophasor (see Section 3.2.5).

3.5.1 The IEEE Std. C37.118

The performances of PMUs are constrained by a single international standard, the
IEEE Std. C37.118. This standard derives from a preliminary version of an IEEE
Standard for synchrophasors, the IEEE Std. 1344-1995 [34], and has been first issued
in 2005 [51], reviewed in 2011 [1, 35], and amended in 2014 [52]. It is composed

Algorithm 1 The iterative-IpDFT synchrophasor estimation algorithm.

1: procedure ITERATIVE-INTERPOLATED DFT(x(#)) > x(#) is the input signal
2: Signal sampling: x(n) = x(nT) > Sampling rate: Fy = 1/T, = 50 kHz
3: Signal buffering: x(n), n=20,...,N — 1 > Window length
T =NT, =3/f

4: Signal windowing (Hanning): x,(n) = x(n) - wy(n) > see (3.55);
5 DFT calculation: X(k), &k =k, +{-1,0,+1} > see (3.18);
6: Two-point DFT interpolation: {;‘\,;l\ , 1’#\ } 0 > see (3.67)—(3.69);
7: forr =1— Rdo

8 Spectral interference estimation: X~ (k) > see (3.72) and (3.73) ;
9: DFT enhancement: X (k) R > see (3.74) and (3.75);
10: Two-point DFT interpolation: {/,4 , ¥} > see (3.67)—(3.69);
11: if {f,;f,fﬁ\}r ~ {f,?f,@}r_l then
12: break for
13: end if
14: end for

15: return {f,Z,;/;}r
16: end procedure
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by two parts: (i) Part I, the IEEE Std. for Synchrophasor Measurements for Power
Systems, deals with the synchrophasor terminology and the synchrophasor measure-
ment requirements and compliance verification; (ii) Part II, the /EEE Standard for
Synchrophasor Data Transfer for Power Systems, mainly defines the synchrophasor
message format, message types, and communications.

The PMU compliance to the IEEE Std. is achieved by satisfying both the mea-
surement requirements specified in Reference 1 and amended in Reference 52 and
the communication requirements as described in Reference 35. Whereas the latter are
straightforward to be accomplished, the former is a more challenging achievement
as it involves several engineering competencies necessary to build a compliant PMU
prototype. To this purpose, Reference 1 has proposed a metrological procedure aimed
at assessing the PMU accuracies during both steady state and dynamic conditions of
a power system. This is done by defining specific tests and reference signals, aimed
at artificially simulating various operating conditions of the electrical grid, together
with the related compliance requirements. The PMU compliance is then assessed by
comparing the PMU performances to the IEEE Std. requirements and verifying if
they respect the previously defined limits.

In what follows, the PMU compliance verification procedure proposed in Ref-
erence 1 is summarized and commented. For further details, the reader should make
reference to what originally stated in the IEEE Standard [1], the related IEEE Guide
[38] and the latest Test Suite Specification (TSS) [53].

3.5.1.1 Reporting rates and reporting times

Synchrophasor measurements produced by PMUs must be reported regularly at a
reporting rate F, that is an integer number of frames per second [1]. The reporting
times shall be evenly spaced through each second, with the time of the first frame
within the second coincident with the UTC-second rollover (i.e., with a fractional
second of 0).

According to Reference 1, a PMU shall support the reporting rates 10, 25, 50
or 10,12, 15, 20, 30, 60 frames-per-second (fps) depending on whether the power
system frequency fy is 50 or 60 Hz, respectively. Higher reporting rates, such as 100
or 120 fps, are also encouraged in the Standard to support time-critical applications
like power system protection and fault management [54]. Nevertheless, it is worth
pointing out that only those PMU characterized by a shorter window length can afford
to push their reporting rates up to these values, as the correlation between consecutive
measurements can make such an increased information rate useless.

3.5.1.2 Performance classes

PMUs shall be tested against the expected operating conditions and the targeted power
system applications. With respect to the latter, the IEEE Std. [1] has defined two
performance classes, corresponding to two distinct PMU applications and different
compliance requirements:

e P-class is intended for Protection applications or any application requiring fast
RTs and reduced reporting latencies (see Section 3.5.1.3).
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e M-class isintended for Measurement applications where more importance is given
to the accuracy of the PMU estimations, and particularly to its capability to reject
inter-harmonics, rather than their RTs and reporting latencies.

It is worth noting that the performance classes defined in the IEEE Std. [1] do not
discriminate between the use of PMUs in transmission or distribution networks and
the various test types and compliance requirements have been derived by assuming
the operating conditions of transmission networks. This is because PMUs have been
originally deployed at such a level, mainly for the higher investment costs and the
critical reliability of this infrastructure. As a consequence, it is important to keep in
mind that such a compliance verification might not be sufficient fora PMU that wants
to operate at the power distribution level.

3.5.1.3 PMU performance evaluation

The evaluation of the PMU performances is typically performed by a dedicated PMU
calibrator capable of characterizing the metrological performances of the PMU under
test by comparing its estimations to a “true” value® and assessing its conformity to
some predefined accuracy limits.

In what follows, in the following sections, the metrics defined in Reference 1
to evaluate the PMU estimation errors together with those for the PMU RT and
measurement reporting latency are presented.

Total vector error
The PMU accuracy in estimating the true synchrophasor can be expressed indepen-
dently in terms of the amplitude and phase errors or the real- and imaginary-part errors
if rectangular coordinates are adopted. This is, for instance, the approach used in the
case of instrument transformers, where the acceptable errors are expressed separately
in terms of the allowed phase angle and magnitude error (see Reference 55).
Nevertheless, sometimes it is useful to express the SE error with a single value
that includes both components. This quantity has been defined in Reference 1 and is
called fotal vector error (TVE). The TVE is a real number that expresses the Euclidean
distance between the true and estimated synchrophasors, normalized with respect to
the amplitude of the true synchrophasor (see Figure 3.13):
A |:\; —X |
TVE & ——— (3.76)
X1
_ %) = 4% 377
X, + Xl

= 2 = 2
X —X) +X—-X
_ | X)2 +)((.2 ) (3.78)

8Since the “true” value of a quantity is hidden by definition, in what follows, the term “true” will be used
to define a reference quantity characterized by a variance that is known and can be a priori considered
much smaller than the one of the PMU estimation.
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Figure 3.13  Complex plane plot showing the “true” phasor and the measured
one that is, in this case, compliant with the TVE requirements
(grey area centered around the “true” phasor) (adapted from
Reference 1)

where X identifies the synchrophasor estimated by the PMU, X the true one, and
the subscripts » and i identify the real and imaginary parts of the synchrophasor,
respectively.

The TVE can be used to set the PMU accuracy requirements by defining the
maximum allowable limit like any other error quantity. It can be visualized as a circle
centred around the true synchrophasor X characterized by a radius corresponding
to the maximum allowable TVE (that also correspond to the maximum allowable
magnitude error). If the estimated synchrophasor falls within the circle, the PMU is
compliant else it is not (see Figure 3.13).

Treating a single number to characterize the PMU accuracy in estimating the
synchrophasor has its advantages and disadvantages. Among these, the impossibility
to decouple the contribution of amplitude and phase estimation error to under-
stand eventual PMU asymmetries in the SE. For these reasons, in what follows, the
TVE will be considered together with the amplitude and phase errors as additional
metrics.

Frequency error
The frequency error (FE) is defined in the IEEE Std. C37.118 [1] as follows:

FE2|f -7 (3.79)

being /" the true frequency value and;’\ the one estimated by the PMU.
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ROCOF error
The rate of change of frequency error (RFE) is defined in the IEEE Std. C37.118 [1]
as follows:

RFE 2 |ROCOF — ROCOF (3.80)

being ROCOF the true ROCOF value and ROCOF the one estimated by the PMU.

Magnitude error
The magnitude error is defined as follows:

e 2Ad—A (3.81)
being A the true magnitude of the signal and A the one estimated by the PMU.

Phase error
The phase error is defined as follows:

gy 2y — v (3.82)

being ¢ the true instantaneous phase of the signal and x’i the one estimated by the
PMU.

Response time

The RT is defined as the transition time between two consecutive steady-state mea-
surements, before and after a step change is applied at one or more waveforms acquired
by the PMU.

It is evaluated by applying a step change in the amplitude or phase of the input
waveforms and measuring the time interval where the PMU errors exceed some
predefined accuracy limits (see Figure 3.14). If #y,, is the time of the first PMU
estimation that exceed the limit and #,,; is the time of the first PMU estimation that
re-enters and stays within that limit, then the RT can be computed as:

RT £ end — Lstart (383)

The evaluation of the RT is useful to understand the effect of the adopted window
length during power system transients.

Delay time
The delay time is defined as the time interval between the instant that a step change
is applied to the input of a PMU and measurement time that the stepped parameter
achieves a value that is halfway between the initial and final steady-state values [1].
It is evaluated by applying a step change in the amplitude or phase of the input
waveforms and measuring the time interval between the effective time the step change
takes place and the moment the PMU estimation of the stepped parameter reached a
value that is halfway between the initial and final steady-state values (see Figure 3.14).
The evaluation of the delay time is useful to verify that the timestamp has been
properly compensated for any delay introduced by the PMU filtering system.
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Figure 3.14 Representation of the PMU RT, delay time and maximum overshoot
during an amplitude step change with a TVE limit of 1% (adapted
from Reference 1)

Maximum overshoot

The maximum overshoot is defined as the measure of the maximum peak value of
the estimated synchrophasor by the PMU during a step change of the instantaneous
amplitude or phase (see Figure 3.14).

Reporting latency
The reporting latency is the time delay between the time a specific event has occurred
in the power system and the time it is measured and reported by the PMU. The main
contribution to this quantity are: (i) the adopted window length, (ii) the processing time
needed by the SE algorithm and (iii) the processing time needed by the encapsulation
and streaming process.

It is typically measured by connecting the PMU point-to-point with a PMU cali-
brator that has the possibility to time-tag the moment a PMU data frame is received at
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Table 3.2 IEEE Std. C37.118 compliance requirements for steady-state conditions
(in the table F is the PMU reporting rate). The symbol “—"" means that
either the specific performance class does not include that specific test
or the specific requirements have been suspended by the IEEE Std.
C37.118 amendment [52]

Influence quantity TVE (%) FE (Hz) RFE (Hz/s)

P-class M-class P-class M-class P-class M-class

0.005  0.005 0.4 0.1
0.005  0.005 0.4 0.1
0.005  0.025 0.4 -
0.005  0.005 0.4 -
3 - 0.01 - -

Signal frequency
Signal magnitude
F. > 20

Harmonic distortion F. <20

| == ==
—_ e —

OOB interference

its network adapter. By assuming the network delays negligible, the reporting latency
can be computed as follows:

RL2: 1 (3.84)

being ¢, the PMU timestamp of a specific data frame and ¢, the time that data frame
has been received in the calibrator.

The maximum allowable reporting latencies are independent of the testing con-
ditions and equal to 2/F, and 7/F, for P-class and M-class, respectively, being F, the
PMU reporting rate.

3.5.1.4 The steady-state compliance tests

Steady-state conditions are defined as conditions where the instantaneous parameters
of the reference signals (including also the parameters of the interfering signals other
than the main tone) are constant along the whole duration of each sub-test. According
to Reference 1, the PMU steady-state compliance can be accomplished by satisfy-
ing the accuracy requirements for TVE, FE and RFE of the specific performance
class, while varying the influence quantities that are listed below. Table 3.2 summa-
rize the IEEE Std. C37.118 [1] steady-state compliance limits (including the latest
amendment reported in Reference 52) for TVE, FE and RFE for both performance
classes P and M.

Signal frequency

During this test, the reference signals are composed by a single sinusoidal component
characterized by a frequency f that is varied by 0.1 Hz between each sub-test, whereas
the other tone parameters (4 and ¢) are kept constant. The frequency bandwidth to
be tested depends on the targeted performance class and reporting rate but cannot be
higher than 10 Hz, centred around the nominal frequency f, (e.g., in the case of a
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nominal frequency of 50 Hz, the widest frequency range to be tested is between 45
and 55 Hz).

Signal magnitude (voltage and current)

During this test, the reference signal is composed by a single sinusoidal component
characterized by an amplitude 4 that is varied by 10% between each sub-test, whereas
the other tone parameters (f and ¢) are kept constant. The amplitude range to be tested
depends on the targeted performance class and whether the measured quantity is a
voltage or a current. In general, it cannot be lower than 10% of the nominal amplitude
Ay and higher than 120% of 4, for voltage signals or 200% of A for current signals.

Harmonic distortion

This test allows to assess the influence of harmonics on the quality of the estimated
synchrophasor, frequency, and ROCOF. It assumes that a steady-state single-tone
signal at the nominal frequency f; and characterized by a nominal amplitude 4 is
corrupted by a single superposed harmonic characterized by an amplitude that is either
1% or 10% of the nominal amplitude 4, in case of P-class or M-class compliance,
respectively. The harmonic order is varied between each test, starting from the second
up to the 50th harmonic.

Out-of-band interference

This test allows to assess the influence of inter- and sub-harmonics on the quality
of the estimated synchrophasor, frequency, and ROCOF and it is only defined for
M-class compliance. Out-of-band (OOB) compliance must be tested with a main-
tone signal characterized by a frequency within fy — 0.1F,/2 and f + 0.1F, /2, being
F, the reporting rate and F, /2 the associated Nyquist limit (e.g., between 47.5 and
52.5Hz if f; is 50 Hz) and a nominal amplitude 4,. Single inter- or sub-harmonic
signals must be superposed to such a main tone and be characterized by an amplitude
equal to 10% of 4y and a frequency that is either within 10 Hz and fy — F,. /2 or within
fo + F,./2 and 2f;.

3.5.1.5 The dynamic compliance tests

Dynamic conditions are defined in Reference 1 as conditions where the instantaneous
parameters of the main tone of the reference signal (namely its frequency £, amplitude
A, and initial phase ¢) are not constant along the duration of each sub-test. Therefore,
with the term dynamic conditions, the IEEE Std. [1] does not include the evalua-
tion of the PMU performances during dynamic behaviour of any interfering signals.
According to Reference 1, the PMU dynamic compliance can be accomplished by
satisfying the accuracy requirements for TVE, FE and RFE together those for the RT
for the specific performance class, during the following tests.

Measurement bandwidth

This test aims at testing the quality of the PMU estimations during increasing vari-
ation of the instantaneous amplitude A(¢) and phase v (¢) of the main tone of the
reference signal. In particular, during this test, the reference signals are characterized
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by independent sinusoidal amplitude or phase modulations according to the following
formula:

x(t) = Ao [1 + k, cos Qrfyt)] - cos [2mfot + k, cos Qmfut — 1) ] (3.85)

being f,, the modulating frequency, &, and k, the amplitude and modulation factors,
respectively. According to Reference 1, f,, must be varied by steps of 0.2 Hz or smaller
between each sub-test, within a range that goes from 0.1 to F), £ min (F, /10,2)
or from 0.1 to F,, £ min (F,/10,5) in the case of P-class or M-class compliance,
respectively. On the other hand, the modulation factors k, and k, are set constant to
0.1 and the two modulations applied separately.

System frequency ramp

This test is defined to verify the correct positioning of the timestamp within the time
window and to test the linearity of the PMU “filter”. During this test, the main-tone
parameters are kept constant except the instantaneous frequency that is varied linearly
with a constant rate of 1 Hz/s. Both positive and negative ramps must be tested within
a frequency range that is between fy — 2 Hz and fy + 2 Hz for P-class compliance
and between f; — min (F,/5,5) Hz and f;, 4+ min (F,/5, 5) Hz in the case of M-class
compliance.

Step changes in amplitude and phase

This test is designed to simulate sudden power system events like voltage and current
variations during faults, short circuits, or the synchronization of islanded/separated
networks. It is aimed at testing the PMU RT, that is mainly influenced by the adopted
time-window length. According to Reference 1, the step change is applied simultane-
ously to all three phases and to both voltage and current inputs. The IEEE Std. requires
to test 10% positive and negative amplitude steps and 10° positive and negative phase
steps.

Tables 3.4 and 3.5 summarize the IEEE Std. C37.118 [1] dynamic compliance
limits (including the latest amendment reported in Reference 52) for TVE, FE and
RFE (see Table 3.3) together with those for the RT (see Table 3.4), delay time and
maximum overshoot (see Table 3.5) for both performance classes P and M.

Table 3.3 IEEE Std. C37.118 limits for TVE, FE and RFE during dynamic
conditions (in the table F,, is the maximum modulating frequency for a
specific PMU reporting rate F,)

Test TVE (%) FE (Hz) RFE (Hz/s)
P-class M-class P-class M-class P-class M-class

Measurement bandwidth 3 3 0.03F, 0.06F, 0.187F% 0.187F?

Frequency ramp 1 1 0.01 0.01 0.4 0.2

Amplitude/phase steps 1 1 0.005 0.005 0.4 0.1
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Table 3.4 IEEE Std. C37.118 limits for RT during amplitude and phase steps

Test Phasor RT (s) Frequency RT (s) ROCOF RT (s)

P-class M-class P-class M-class P-class M-class

Amplitude/ 2/f; 7/F, 4.5/fo max (14/F,,14/fo) 6/f max (14/F,, 14/fo)
phase steps

Table 3.5 IEEE Std. C37.118 limits for delay time and maximum overshoot during
amplitude and phase steps

Test Delay time (s) Maximum overshoot
P-class M-class P-class M-class
Amplitude/phase steps 1/ (4F,) 1/ (4F,) 0.0054¢ 0.014¢

3.5.2 Performance assessment of the i-lpDFT SE algorithm

This section presents a partial performance assessment of the i-IpDFT SE algorithm
presented in Section 3.4.2, aimed at demonstrating the improvement introduced by
the proposed iterative compensation of the spectral interference produced by the neg-
ative image component on the positive frequency range. In particular, this section
will analyse the effects of the number of iterations on the estimated synchrophasor
accuracy in both static and dynamic conditions by making reference to two test condi-
tions defined in the IEEE Std. C37.118, namely, the signal frequency test (see Section
3.5.1.4) and the system frequency ramp test (see Section 3.5.1.5).

The reference signals have been synthesized in a software environment where
the previously presented i-IpDFT technique has been also implemented. These tests
were chosen because they are those in the IEEE Std. [1] that magnify the effects of
spectral interference and therefore the tests where the i-IpDFT method should mostly
improve the performances of classical [pDFT methods.

The performance of the SE is shown in function of the frequency, amplitude
and phase estimation errors as stated in Section 3.5.1.3. In particular, in order to
combine multiple plots in a single graph, the simulation results have been presented
in a logarithmic scale and therefore the above errors are presented in terms of their
absolute value.

3.5.2.1 Steady-state performances

The improvement introduced by the i-IpDFT in steady-state conditions is presented
during the signal frequency test (see Section 3.5.1.4) with a nominal frequency of
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50 Hz. Nevertheless, equivalent results can be obtained for 60 Hz. The i-IpDFT per-
formances are shown in function of the nominal frequency of each sub-test that,
in the case of a 50 Hz power system, must span the frequency interval between 45
and 55 Hz.

In particular, Figure 3.15 shows the maximum frequency, amplitude, and phase
errors for various number of iterations (i.e., the parameter » in Algorithm 1), starting
from » = 0 (i.e., the classical IpDFT approach without any compensation of the
spectral interference) up to r = 4. The effects of the iterative compensation of the
spectral interference produced by the negative image of the spectrum are evident and
self-explanatory: the estimation accuracies of frequency, amplitude and phase are
improved of almost two orders of magnitude every new iteration, up to the fourth.
After, the effects of the spectral interference compensation are no longer visible.

Additionally, it is possible observing that, independently of the number of iter-
ations, the best accuracies are obtained for f* = fy (namely for values of frequency
closer to 50 Hz) since the effects of spectral leakage interference are here minimized.
They deteriorate as the nominal frequency of each sub-test deviates from the rated
one f; and the effects of spectral interference increase. In particular, the i-IpDFT
accuracies are asymmetric with respect to fy; in other words, the frequency interval
on the left of f; usually exhibits poorer performances than the frequency interval on
the right of f. The cause of this behaviour is still related to the spectral interference
produced by the negative image spectrum that is higher as the two images get closer,
namely for smaller nominal frequencies. Nevertheless, such an asymmetry between
the frequency intervals on the left and on the right of f; is relative and becomes less
and less visible by increasing the number of iterations.

Finally, Figure 3.16 compares the performances of the i-IpDFT SE algorithm
with those provided by the classical [pDFT technique that adopt the Hanning window
during the signal frequency test. In particular, the five-, four-, three-, and two-
period IpDFT SE techniques (dashed lines, various gray scales) are compared to
the three- and two-period i-IpDFT SE techniques that adopt four and seven iterations,
respectively (continuous lines).

As it can be noticed, the classical IpDFT accuracy is strongly related to the
adopted window length and, due to the higher immunity to spectral leakage, the
longer the window length the higher the steady-state accuracies. On the other hand,
the i-IpDFT technique definitely improves such an accuracy and, at the same time,
allows to reduce the window length down to two periods of a signal at the nominal
frequency fy. Such a possibility introduces non-negligible advantages as it allows to
considerably reduce the PMU RTs and measurement reporting latencies (see Section
3.5.1.3) without deteriorating the PMU accuracies.

3.5.2.2 Dynamic performances

The improvement introduced by the i-IpDFT technique during dynamic conditions
can be evaluated by making reference to the frequency ramp test, defined in the IEEE
Std. C37.118 (see Section 3.5.1.5). During this test, the frequency of the reference
signal is linearly increased from 45 to 55 Hz at a rate of 1 Hz/s.
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Figure 3.17 shows the instantaneous errors in the estimation of frequency ampli-
tude and phase during a positive frequency ramp (the results for the negative ramp
are here omitted but lead to equivalent conclusions) for various number of iterations.
Similarly to the previous figure, the light gray line is obtained for » =0 and makes
reference to a classical [pDFT technique where the effects of the spectral interference
are neglected. The other two lines are the result of the i-IpDFT with one and two
iterations, respectively. Also, during this test, the improvements introduced by the
iterative compensation of the spectral interference produced by the negative image of
the tone are evident and lead to enhanced accuracies of the estimated synchrophasor
that can reach accuracies similar to those obtained during steady state. In particu-
lar, the effects of the iterative compensation presented in Section 3.4.2.1 are visible
up to the third iteration in the case of the estimated value of frequency and amplitude
and up to the second iteration for the estimated phase.

3.6 Conclusions

This chapter has discussed the main elements related to the definition of DFT-based
SE algorithms since they represent the most commonly adopted ones in real PMU
devices. In particular, this chapter has focused on the analysis of spectral leakage as
it represents the most relevant source of uncertainty when using the DFT to estimate
the parameters of a sinusoidal signal. This aspect is of importance in SE processes
since they usually adopt relatively short windows to reduce the PMU measurement
reporting latencies and RTs.

This chapter has also presented state-of-the-art SE algorithms belonging
to the family of IpDFT estimators. This chapter has discussed both the classical
IpDFT as well as its iterative counterpart (i-IpDFT) capable of dealing with the
compensation of the effects of the self-interaction between the positive and the neg-
ative images of the spectrum. Such a technique has demonstrated to improve the
classical IpDFT performances during both static and dynamic conditions described
in the IEEE Std. C37.118 and to be immune to the instantaneous frequency vari-
ations of a power system. Furthermore, it has been demonstrated that the i-IpDFT
technique outperforms classical IpDFT methods, also by adopting shorter windows
(up to two periods) that are usually worsening the estimation uncertainty of any SE
algorithm.
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